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I. INTRODUCTION

In recent years, significant activities have been undertaken

to improve the efficiency, stability and range of application of

Newton Raphson (NR) type solution schemes in handling nonlinear

finite element (FE) simulations. This has led to the developF, ent

of i;yperlinear [1,2], circular [3], elliptic [4,5] and piecev_ise

continuous [6] constraint surfaces° These are used to control the

INR iterative process, thereby, enabling the handling of transition

in Jacobian definiteness, as well as, a wide variety of geometric

and material nonlinearities [I-7]. Such work has emphasized the

following developmental aspects namely:

i) Streamline Jacobian (stiffness matrix) updating for

instance as in the use of the BFGS scheme [8-10].

ii) Introduce use of constraints to bound iterations associated

with the incremental Newton Raphson (INR) algorithm, thus,

enabling the handling of problem with indefinite Jacobian

properties [3-6]., and

iii) Introduce self adaptive attributes enabling automatic load

[5,6] "
stepping

The above work, in particular the constrained methodology has

significantly extended the range of INR based schemes, regardless several diffi-

culties are still present. In addition to the storage intensiveness of

the scheme, the user is faced with the lack of apriori or automatic

procedures enabling adjustment of size, shape and orientation of the

constraint surface, so as to enhance numerical robustness. In this con-

text, the user must undergo the trial and error process of defining
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load stepping. Depending on the constraint function employed, this

involves the specification of the various geometric attributes of the

bounding surface. For instance, in the case of the hyperelliptic con-

straint surface (HECS), the aspect ratio and overall ordinate and

abscissa bounds must be established on a global level.

To circumvent the foregoing difficulties, this paper develops

numerical strategies which enable the automatic adjustment of the

size, shape and orientation of the constraint surface associated with

full (FINR), modified (MINR) and BFGS updated Newton Raphson FE equation

solvers. This will be achieved through the introduction of a hierarchy

of localized constraints which enable the control of the iterative ex-

cursions of various levels of the governing field vBriables. The approach

taken is general in that a wide variety of constraint surfaces can be

handled by the methodology. In addition to the general development, the

results of several extensive benchmark activities is also presented. Here,

special emphasis is given to illustrating the flexibility and robustness

of the locally bound approach to controlling successive globally con-

strained INR type solution algorithms. In the sections which follow,

detailed discussions will be given on the nature and extent of shortcomings

of constrained approaches, the development of reshaping and resizing

schemes from a l-D point of view, the development of local constraint

methodologies via FE generalization. Finally, the results of extensive

benchmark examples demonstrating enhanced numeri'cal characteristics will

be presented.

11. CONSTRAINED NEWTON RAPHSON SCHEMES: STRENGTHS/SHORTCOfilNGS

As noted earlier, INR type solution schemes involving either

modified, straight or BFGS type stiffness updating suffer from sever_l
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very basic shortcomings [II] To simplify the discussion and develop-

ment, the INR is reinterpreted to be a linearly bound hyperlinear ex-

trapolation of the solution curve via a full, modified or BFGS updated

stiffness. Specifically, noting Fig. 2-I, the succession of extrapola-

tion are bound by the intersection with the hyperplane defined by the

designated load level. For such a process, it is difficult to guarantee

the requisite intersections. This is especially true for structural

stability problems involving buckling with turning point behavior where

slope indefiniteness may occur.

To bypass such problems, the surface bounding the INR extrapolation

can be reinterpreted to be a hyperplane which is oblique to F : constant

or alternatively a different function. Such an interpretation naturally

yields the approaches taken by Wempner [I] Riks [2] Crisfield [3] and
i

Padovan, et al. [4-6] Specifically, noting Fig. 2-2, this has led to

the use of constant arc lengths [1,2], oblique hyperlines, and circular

elliptic [4,5] hyperbolic [6] as well as piecewise continuous [6]

bounding constraint surfaces. While all such methodologies can handle

the turning point problems associated with structural stability, as shown

in Fig. 2-3, those which involve closed constraint curves more readily

[5]
guarantee the requisite intersection with the INR extrapolation

In spite of the advanced features of the foregoing schemes, the con-

strained approach also suffers from several very important fundamental

shortcomings. While various of these are still outgrowths of the metho-

dologies INR base, several are a direct function of the use of the con-

straint concept. Overall, the shortcomings are defined by the following:

i) Unlike the F : constant constraint surface, all the other

surCaces yield intersections with the INR extrapolations which,

[3]

3



iii)

due to system nonlinearity remain apriori unknown; this makes

the calculation for specific so called target loads awkward.

ii) While the various constraint surfaces self adaptively adjust

load stepping during successive iterations, such incrementation

is a direct outgrowth of their intrinsic geometries. Hence,

the user is still left with the oftentimes puzzling problem of

defining their requisite shape, aspect ratio, c_bliqueness,,arc

length, radii, etc.

Because of the lack of apriori knowledge of the intersection of

the constraint and I._Rextrapolation, it is difficult to handle

mixed problems which may involve some combination of prescribed

displacement and loading requirements or targets.
P

Oversized constraint surfaces may initiate a nonintersection in

hyperspace alnd hence solution failure. (See Fig. 2-a). In con-

trast, an overly tight surface can result in an inefficient and

hence, expensive iteration process.

v) Generally, since the intersections of the constraint curve and

solution surface are not apriori known, typically the constrained

methodology will converge to points significantly reduced from

expected load steps: Noting Fig. 2-5, this leads to under uti-

lized load steps and consequently numerical inefficiency.

In the following sections, several methodologies will be imple-

mented to bypass the foregoing shortcomings. As will be seen, these

are general enough to be employed with most of the constraints in

use today.

iv)
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III. It_PROVED CONSTRAINT SCHEME: I-D DEVELOPMENT

To simplify the development of the improved constraint methodology,

we shall first consider modifications to the solution of I-D nonlinear

equations. Recalling the comments of the preceding section, it follows

that the shortcomings of the NR based constraint schemes fall into

several main categories namely:

i) The need to develop methodologies which -

• Enable convergence to specific load and/or

deflection states and;

• Allow full use of a given load step;

ii) Develop schemes which automate -

• Sizing of constraint surface and;

• Reshape and reorient constraint surface

so as to improve convergence characteristics.

To circumvent the foregoing shortcomings, several different

modifications will be introduced into the constrained methodology.

The main thrust of these will be twofold, namely:

i) To provide for self adaptive modifications of constraint

geometry enabling convergence to designated target load

and/or deflection state and;

ii) To employ .Iocalized constraints so as to enable essentially

automatic sizing of constraint while still maintaining

numerically stable convergence characteristics.

While the geometries of the various candidate constraint hyper-

surfaces are unique, there are basic coordinate transformations which

will enable flexible reshaping and reorientatiOno Specifically, fer
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this paper, we shall consider the use of translations, rotations

and coordinate stretches. Obviously, dependent on the type of con-

straint geometry used, some of these schemes are more advantageous

than others. For example, consider the use of the oblique hyperplane,

Fig. 3-I illustrates combinations of rotation and rotation-translations.

While both schemes possess the requisite targeting capabilities, the

piecewise continuous rotation-translation scheme may yield a more

stable numerical convergence process. Note, in the vicinity of turning

points, the rotation process of both methodologies would have to be

stopped to guarantee an intersection with the solution curve.

Considering the piecewise hyperbolic constraint, Fig. 3-2 de-

monstrates the use of translations to enable requisite targeting. As

with the oblique hyperplanar constraint, in the vicinity of turning

points, the translation process is stooped to insure the requisite

intersections.

For the elliptic constraint, abscissa or ordinate coordinate

stretches can be used to enable the requisite targeting. Such a pro-

cess is illustrated in Fig. 3-3. In particular, the iterations deDicted

involve an abscissa stretched hyperelliptic constraint surface AHECS.

To establish the requisite algorithmic formulation, we shall consider

the following l-D nonlinear equation namely:

G(Y) : F (3.1)

The NR scheme associated with (3.1) is given by the expression

d
= + (_ - G(Yn))/G'(Yn); G'(Y n) = _ (G(Yn)) (3.2)Yn+l Yn

such that o is the designated value of F, In terms of the constraint

6



concept, the iterations defined by (3.2) can be bound by rescaling

via the parameter _. The choice of _ is given by the intersection of

the NRextrapolation and the constraint curve. For example, such inter-

Overall, such a process is given bysections are defined in Fig. 2-2.

the following relations:

i) Constrained NR algorithm;

: + (_n+l _ G ))IG' )Yn+l Yn - (Yn (Yn

ii) Constraint curve;

C(Y, @) =0

Such that the intersection takes the form

I (_n+l' Yn+l) : O.

(3.3)

(3.4)

iv)

iii)

Circular

F2 + y2 : _2

Elliptic

F2 + _y2 : ¢2

Piecewise Hyperbolic

(F - ¢)(Y - y) : u

(3.6)

(3.7)

(3.8)

ii)

To determine _n+l' the specific form of C must be chosen. In

the case of oblique linear, circular, elliptic and piecewise hyperbolic

curves/surfaces, we have that [I-6]

i) Oblique linear

F = _ Y + _ (3.5)



where the parameters _, _, y and u are user defined. As noted earlier,

such relationships can be modified to admit translation rotation and

coordinate stretching.

For instance, considering the oblique linear constraint, rotation

can be introduced by varying the selection of _ in the range _ _ [0, .J);

u < = for F > 0 and _ _ [-_, 0); u < = for F < O. The actual variation
w

of _ can be undertaken in several different ways, namely

i) Angular increments, Fig. 3-4;

ii) Force increments, Fig. 3-5;

iii) MNR estimated LY, Fig. 3-6;

iv) BFGS-NR estimated _Y, and via

v) BFGS-NR or MNR estimated _F.

m

Note in the case of fixed AY incrementation, the sweeping of the

oblique linear constraint is modified to handle iterative steps in the

vicinity of the designated load and/or deflection state. Specifically,

the constraint is set to F : ¢. Overall, the algorithm associated with

the fixed MNR estimated z_Y sweep of the oblique linear constraint requires

a knowledge of successive intersection points. That is, considering the

(n÷l) th rotation, the associated MNR extrapolation and oblique linear

constraint curve are given by the following relations:

= + (F G ))/G' (3.9)Y Yn - (Yn

and

F = %+I Y ÷ @ (3.10)
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In terms of (3.9) and (3.10), the intersection I n defined in Fig. 3-7

is given by

I 0 I 0

Yn : Yn + (_n+l <> - G(Yn_)/G' (3.11)

! I

Xn+l > = _n+l Yn + ; (3.12)

Since

' ° -_Y (3.13)Yn - Yn =

is given, (3.11) and (3.12) can be used to define the unknowns =n+l
I

and _n+l " After several manipulations we have that

l {G' _Y + G °) - ¢} (3.14)
an+l = y° + _ (Yn

n

-- 0

' - o 1 {G' &Y + G(Y ) - @} (3.15)

_n+l ¢(Yn + &T/) n

Note, for the BFGS or fully updated schemes, G' appearing in (3.14) and

(3.15) can be replaced by its corrected values namely G' (Yn).

The swept oblique linearly constrained MNR algorithm has two basic
I

forms. Namely for _n+l < I, (3.14) and (3.15) are used to perform the
!

necessary iterations. When _n+l > I, then sweeping is stopped and iteration

continues as per (3.2). Note, in the vicinity of turning or buckling points,

the foregoing algorithm must be modified to insure the requisite intersection.

This can be achieved in several ways that is:

i) The curvature can be monitored as per the G'(Y ) parameter;
n

when below critical level sweeping is stopped;

9



ii) Alternatively, a monotonicity check of the G(Yn) sequence can

be used to terminate sweeping.

In a similar context, the alternative constraint curves can be

modified to include rotations, translations and stretches. For example,

_;'e shall consider the more versatile elliptic surface defined in Figs.

2-5 and 3-3° Considering the (n+l) th successive stretch depicted in

_, $ I IFiG 3-8 the following relations define the intersSction n namely

I 0 I 0 I

Yn : Yn + (_n+l > - G(Yn))/G (3.16)

! !

(>'n+l @)2 + Un+l (Yn)2 : @2 (3.17)

• - !

Due to (3.13), solving (3.16) and (3.17) for >'n+l and Un+1 we have that

' _I '_n+l - _- {G _Y + G(Y ) ) (3.18)

! - o 2

_ 1 {@2 _ (G AY - G(Yn) ) } (3.1 9)_n+l °
(Yn + A_)2

Like the oblique linear constraint, the e!liptically bound NR

can be employed in a variety of ways° These include:

i) After each stretch of the elliptic constraint curve, several

iterations can be used to stabilize the numerical convergence

process ;

ii) The ongoing stretch of the elliptic constraint can be used to

delimit successive INR type iterations;

iii) The constraint can be employed with either BFGS, full or

modified slope updating;

I0
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iv) For _ - 0 (I) LY can be set to _ (large number) to enable
n

convergence to designated load level;

I

v) When the definiteness of G varies as in the Vicinity of turning

points, the stretching process is terminated.

As noted by Padovaq and Arechaca [5] so-called safety zones can

be established for the constrained scheme wherein convergence can be

guaranteed under the appropriate conditions. For instance, let us con-

sider the case where successive iterations are undertaken between abscissa

or ordinate stretches of the ellipse° Recalling (3.16) and (3.17), once

"-'n+l is fixed by the stretch, (3.19), we must insure th_-t subsequent

iterations lie in the appropriate safety zone. This is determined by

monitoring the intersection points of subsequent iterations. Specifically,

noting Fig. 3-8, it follows that the _th intersection cf the nth ordinate

stretch is given by

y_ = y_-l + x_ _-l 'n n ( n+l > - G(Y ))/G (3.20)

(X_ 2 n_ 2 ¢2n+l 3) + _n+l (Y) = (3.21)

&

Solving for _n+l we obtain the following quadratic identity, that is

2 +2A_
(In+l :) Cl_n n+l C2£n + C3_n = 0 (3.22)

where

C1 £n : Q2 + (_/G')2 (3 23)Un+ 1

: (y_-I _ G(Yn-l)iG )(rIG ) 'Jn+l (3.24)C2_n " n

11



= _yC-l _ G(y_-I)IG')2 2C3_n - n Un+l " @ (3.25)

I

Z

In terms of (3.22), we yield the expression

_ 1 {. C2£n_+ [(C2tn)2 _ C1 C3£n]_" }
'n+l Cl Ln £n

(3.26)

Following the formalism of Padovan and Arechaga [5], for the

current purposes, the safety zone is defined by those values of Y and

F where the discriminant of (3_26) is positive definite. Noting (3.23) -

(3.24), such a requirement yields that

(C2_.n)2 _>CI£ n C3£n

(Yn_+I - G(y_-I"n )/G')2 (¢/G')2 (_n+l)2 >

(@2 + (@/G')2 fy_-I (y_-l )2 _2_n+l) { - G )/G' - }" n " n Un+l
(3.27)

m

Such a criterion enables the appropriate choice of aY and hence the

sizing of the ellipse.

The foregoing discussion has developed a variety of methodologies
7

enabling the convergence to specified force and/or deflection states.

Generally, this has involved the reshaping or sizing of the constraint

surface. In the section to follow, the scheme will be automated through

the use of localized constraints which retain targeting capabilities,

while also enabling generalization to large scale multidegree of free-

dom simulations.

12



IV. EXTENSIONS TO N-D: FE DEVELOPMENT

To automate the control of the resizing/reshaping of the con-

straint surface for multidimensional problems, the use of localized

bounds will be introduced. This will be facilitated by employing a

nonlinear FE formulation. Specifically, assuming that the standard

2nd Piola Kirchhoff [13] stress Sij and Lagrangian strain [13] Li j

tensor combination are employed, the governing field equations take

the form

9 + ;u )) + f = 0 (4 I)
;aj (Sjk(Sik ;ak oi

Sij : Sij (LII, L22, ° .)

such that [13]

(4.2)

Po _ai _ (4.3)
Sij - p _x_ ;x_ o_

_ l (u + uj + u u ) (4.4)Lij - 2 i,j ,i _,i _,j

with %, p defining the initial and current densities, x i Euler

coordinates, a i Lagrangian coordinates, oij the Cauchy stress and

ui are the components of the displacement vector. For nonlinear

materials, generally (4.2) is cast in an incremental form. In this

context

aSij = YijEk _L_k
(4.5)

such that Yijck is the tangent stiffness of the medium.

Using the usual displacement type formulation, the displacement

vector of a given element can be related to its associated nodal de-

13



formations via the expression [14]

u : [N(x)] Y (4.6)

such that

T (u u2 u ) (4 7)u = I' ' 3

and [N], Y respectively denote the shape function and nodal deflection

column vector: Employing (4.1 4.7) inconjunction with the virtual

[14]
work principle, the following FE formulations are obtained namely

I _(L) S dv
R

I [B*] T S dv : F (4.8)

where F is a column vector defining nodal forces, _( ) the variational

operator and

(S)T : (Sll, S22, S33, Sl2, S23, S13) (4.9)

a(L) : [B*] 6(Y) (4.10)
w

with [ 4]

@c

[B ] [B] + [Bn (Y)] [G] (4.11)

(L)T : (Lll, L22, L33, Ll2, L23, Ll3) (4.12)

The straight INR algorithm typically used to solve (4.8) is given

by the expression [14,15]

[K (Ykm)]-Ayk+l- : -m+l_k (4.13)

where k defines the load step, m the iteration count for the given

step and [14,i5]

14



yk : Fk (yk)]T S-m+l - I [B* (yk) dv (4.14)
" R " " "

Fk : Fk-I + _F k (4.15)

[K(yk)] : I {[G] T [s(yk)][G]
.m R -m

such that [s(yk)]-m is the prestress matrix defined at Yk_mand [D(Ykm)].

is the tangent material stiffness matrix namely

(4.17)

For the MINR, the tangent stiffness [K(Y)] is updated intermittently.

For the constrained INR, the AYkm+l excursion is bound by global

level surfaces cast in terms of normed field variables.

considering the HECS, we have from Fig. 4-I that

Specifically,

IIfl12 + _ flY II2 = IIA Fk I12 (4.18)

where the Euclidean norm takes the form

IIyil2 = _ (yi)2 (4.19)
- i

Typically, the choice of u and the target load is user defined. As

can be seen from (4.18), such variables represent global level parameters

and hence, are difficult to select. In as much as normed constraint

equations like (4.18) or its linear; circular, or piecewise hyperbolic

counterparts represent mathematically convenient expressions, they do not

provide for control at local levels. This follows from the fact that

norms represent gross upper bounds on the various excursions. In this

15



context they provide neither information on nor control of individual

degrees of freedom. 1This situation applies to all the various types

of field variables namely the deflections, deformation gradients,

stresses, strains, strain energy density, temperature, thermal gra-

dients velocities, acceleratiQns etc.

The foregoing difficulties can be partially circumvented by par-

titioning the governing dependent finTte element vect<_rial field.vari-

ables into a hierarchy of different groups. At the lowest position

of the hierarchy are individual field variables. These can be located

either at given nodes or integration points. The overall levels which

such groups can be partitioned consists of:

i) Individual degrees of freedom;

ii) Vectorial and tensorial quantities at nodes and

integration ipoints ;

iii) Whole elements and substructu_'al regions;

iv) Locally averaged quantities as in nodal or integration

point extrapolation-interpolations; and

v) Material and nonlinear groupings.

Based on such a partitioning concept, the global norm of say Y is

itself a summation of the various hierarchy of localized norms. In

particular, IIYII can be rearranged as follows:

(IfYN )2 : I: (Yi)2
i

M

= _ (IfY_N )2 (4.20)
£

where the hierarchy of vectors Y_;{ = l, 2, . . . define the various

groups wit_hiD:the global vector Y namely

16



yT yT

Similar hierarchies of groups can be established for all the de-

pendent field variables.

Overall, (4.20) can be applied at two levels namely, globally

and locally. At the global level, '!Y!I can be both employed within a

constraint used to say control the overall iteration process of the

INR so as to enable handling of Jacobian indefiniteness, as well as,

within convergence tests. On the local scale, the various groups Yc

and their associated norms IIYEll can be employed to delimit excursions

generated during the overall iteration process. Such a dual level

approach enables a higher degree of solution control. As will be

seen later, this enables the use of much larger load/deflection incre-

ments while still maintaining good convergence characteristics.

The foregoing partitioned norms can be used to establish localized

constraints which scale the load stepping. Like the global level app-

lication, the local constraint can be chosen from a variety of function

types namely constant, linear, circular, elliptic, piecewise hyperbolic

or perhaps more general bounding functions. The manner of application

depends somewhat on the field variable excursion being controlled. Re-

gardless, several types of applications can be outlined. Overall, these

can be categorized into two main types namely

i) Greatest local upper bounds; ar,d

ii) Intermediate local bounds.

For both procedures, excursions in the various field variables are first

obtained via the standard INR scheme with either full modified or BFGS [8]

type updating. Note, in the case of greatest upper bound schemes, the

17



constraint is chosen so that successive iterations converge _ssen-

tially to the bound set. For the intermediate scheme, the constraint

is chosen so that convergence is directed to limit points in the

interval set by the bound.

To illustrate such approaches we shall first consider the use of

displacement type controls. In terms of successive iterate excursions,

a local upper bound test (LUBT) is required to gage the various par-

titioned groups. Employing the usual Euclidian norm to the partitioned

groups yields the following LUBT, that is

IIAY_II _ AS; CE[I, u] (4.21)

such that A_ defines the _th group upper _oundo Its choice will be

discussed later. If (4.21) is satisfied, then no rescaling of the

load increment is necessary. In cases where (4.21) is violated, then

a one parameter stretch/contraction is applied to the load step. In

particular, (4.14) is recast in the form

where

yk k {Fk-I (Ykm)]Tm+l = )'m+l + AFk " $ [B* s(yk)dv}
" " R - ""'

k
_m+l :

• min (
A

): II aYk_ll >a s

l; I1Avk ll.<

(4.22)

(4.23)

Note the upper bound constraint defined by (4.22 and 4.23) can

either be continuously or intermittently updated. If intermittent

updating occurs, then the _k family is fixed at the boginning of each

load increment. 18



For intermediate type bounds, condition (4.21) can be employed to

resize the global constraint surface. Such a process generally leads

to a succession of iterate excursions which are "smaller" or more con-

servative than those obtained by the previous upper bound approach.

As an example, consider the scaling of the abscissa dimension of say

the HECS. This is achieved by adjusting the parameter _ which controls

the aspect ratio. Specifically, based on (4.12), the initial iterative

excursion associated with say the kth increment takes the form

(4.24)

Now requiring that (4.21) be satisfied for all partitions associated

with Y, we obtain the following one parameter scaling of the HECS

abscissa namely

k [I "FkJl 2

Ul :e_ Ii __z_ll2
(4.25)

whe re

min

l;

( );11Y_II> As
II Y_ II

k
IIA YI_ll > a_

(4.26)

Note for the modified abscissa rescaled HECS namely the AHECS, the

constrained surface is updated at the beginning of each load step and

is thereafter fixed during successive iteration steps associated with

the given load increment.

To enable the appropriate load targeting, _ must be updated

19



during the iterative process.

form

k

llm+I =

such that

k (
em+l =

In this case (4.25 and 4.26) take the

ilrk II2

[I m_l Aykr/ekr II2
r

(4.27)

min (
AC

-~m+l _" -LI1 L,Yk,. !i); !1 ^Yk !I>
.ITI_ / {

I" I! Ayk., II <' .m.t./ £, , _

(4.28)

Based on the foregoing scaling of _, the abscissa dimension of the

AHECS is independent of the load step. In this context, under local

constraint control, successive iterative excursions of the deflection

field are largely independent of load step size so long as very large

AFk increments are employed. Specifically, noting Fig. 4.2, as load

increment size is increased, the hyper tangent plane associated with

the AHECS is essentially vertical. In this context, the intersections

of the INR extrapolation and the AHECS occur near the upper bound con-

straint on the displacement excursion. As will be seen from the forth-

coming benchmark examples, the foregoing configurational properties of

the AHECS enable a high degree of displacement targeting control, as well

as, make the scheme largely load step size insensitive.

In the context of such properties, the AHECS with localized dis-

placement constraint enables the solution to progress to the requisite

loading target under controlled upper bounded iterative increments. Such

a load stepping process is more natural since the anticipated deflection

in the structure can easily be evaluated directly from design level blue-

2O



print considerations which define clearances, fits, acceptable struc-

tural deformations etc.

Pursuing this line of thought further, since strain is functionally
BU.

dependent on the various displacement gradients _-@_., it also seems

natural to employ localized constraints on admissible slope excursions.

"-'U,
1

In terms of the FE formulation, it follows that the various BT_ can be
J

recast in matrix format, that is

(u)- _
°3"x" - o3_x.(f)- - ;xj ([N]Y);. j = I, 2, 3 (4.29)

aui

Based on (4.29), placing constraints on admissible aT: leads to the
J

following pointwise bound on Y, that is

([N])-I a (f)
.Y- _x.l. ax---j

11YII: II a (IN])"I. !t

)-I
<_II_-_j ([N] II 113_j (f)II

<II _ )-i- aT.([N] II:j (4.30)
3

af

where rj defines the upper bound on 11_ II.
point of view, we have that

From an incremental

IIAYII

forVx _ R.

a l

<_lla_ (IN])-II Arj (4.31)

If (4.31) is averaged say over a given element, then we

obtain the more usable expression

21



p

, k )e ' ) IN]) "l dvll AF. (4 32)
!1(-Vm+1 II _<Vell s(_Tj j •

j:I,2,3

where Ve is the volume of the eth element and (Ayk+l)e the associated

incremental nodal deflection. As can be seen, (4.32) represents a

element level partitioning of the bounding process.

In the context of (4.32), similar bounds can be 'defined for'strains,

stresses as well as strain energy excursions. For instance, recalling

the definition of strain, in terms of (4.4, 4.6, 4.11) we. see that

t Lk k ,yk
:.m+l : ([B] + [Bn(Ym+l)][G])_.m+l (4.33)

Considering say the e th element, the norm of (4.33) leads to the following

bounds for admissible AY_+I namely

AYk+l : ([B] + [Bn(Ykm+l)][G])-l 'L k-.m+l
(4.34)

j,k
i_l -.m+l'YkI] :" II ([B] + [B.(Yk._)][G1]"l. .,,,-, .. ,,Lm+llt

<If (EB]+ [B (yk..)][G])-In .m-i-i !] li Akk..ll- _m_- /

<II ([B] + [Bn(Yk+l)]EG])-lll-_-

where z defines the upper bound on ilALRm+Iil.

eth element yields the more useable tonstraint

(4.35)

Averaging over say the

II(AYk_,)ell< Veil s [B*] dvll_'e
.IIITI

Ve

(4.36)

Noting the relation for stress increments, the following normed bounds for
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the admissible (,yk )e-.m+l can be developed via (4.17) namely

. k )e *(Ykm)])-I , k )e(-~m+l : ([D][B . (_Sm+ I

,,

([D][B*(Ykm)])-l':i ',i (-.m+l'Sk )e,t!

_< il ([D][B*(Ymk)]) -I il_; (4.37)

such that _ defines the upper bound on i] ( ''Sk )e-m+l ',I • Equation

, k )e(4.37) defines a pointwise bound on II (_Ym+l !I. For general use,

volume averaged values are perhaps more useful. In this context,

averaging "(4.37) over say the eth element yields the bounding expression

, k )e Ii ( ..[D][B*(yk)] dv)-ll[ _"il (_-m+l II <_ Ve .m (4.38)

Lastly, we shall develop constraints based on controlling successive

increments of energy. For the present purposes, this will be considered

on an element level. In particular, based on (4.8) and Fig. 4.3, the

energy increment associated with the eth element for the (n+l) th itera-

tion is given by the following approximating trapezoid, that is

ek _ 1 (Fk)e + (Z_Ymk+lEm+l 2 { (Fk )e)T )e.,,, .m+l
(4.39)

such that

(.m+lFk )e . (Fk)e.m+ [ke](aYk+l )e (4.40)
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In a normed sense, (4.39) can be recast in the following quadratic

polynomial form in i'.Lyk+l !i namely

Eek Fk)e l k )e)T(Ayk+_ )em+l = (( + [Ke](AY_m 2- .m+l _,,,,

.ek ,, Fk)e,r-m+1 <ii ( ,_
-- Rill

., 2m )e.. 1. ,,il (A +l i + _" _, [ ke],,
,, r,, k e,,
" _:'m+__,) "

'I(Fk)e,i 2_ek- ' "m+l > 0
:i (_yk )ell 2 !:I A k )e' -~m+l ' + 2 ( ~m+l ii

'I[Ke] ',I !I[ke] !I
(a,. 41 )

,, [k eSolving for il(A +i ) It, we obtain the following element level con-

straint

I1(_Yk+l)ell< II ([k)ell +
" II [ ke] !1 "

i

(tl (Fkm)ell 4 Eek)2 + m+l

11[ ke] I1 11[ke]fl
(4.42)

ek defines the constraint on the allowable local
such that here Em+ l

level energy excursion.

As can be seen from the above development, the bounds on the

various field variables ultimately resulted in constraints on the

levels of the AY hierarchy of groups. This is directly due to the

displacement type of FE formulation used to set up the governing

equations.

The foregoing constraints have various advantages depending on

structural geometry, material type, boundary, and loading conditions.
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For instance, beam, plate and shell type thin walled structures undergo

deformation processes which usually involve large deformation and

slope changes when over loaded. Such behavior is typically well de-

fined and thus, can be upper bounded for various loading conditions.

Once the eotential range of deflection and slope excursion are iden-

tified, the localized incremental constraints defined on nodal defor-

mations and displacement gradients can be estimated. In this context,

_L and _?j can be obtained directly from design requirements and em-

pirical data etc. This is incontrast to stress, strain and energy

excursions which are less well defined in such structures. Regardless,

as will be seen later, quite liberal constraints can be employed incon-

junction with say the AHECS and still maintain stable and efficient

iteration processes.

For thick walled structures which are dominated mainly by material

nonlinearity (plasticity), the use of incremental stress, strain and

energy excursion controls are more natural. This follows from the fact

that formally, nonlinear constitutive relations are usually dependent

on stress, strain and energy excursions.

Regardless of the approach taken, due to the use of the displace-

ment type FE formulation, all the foregoing bounds eventually evolve

into a displacement type constraint. In this context, the main thrust

of the forthcoming benchmarking will be to document the numerical ope-

rating characteristics of displacement type localized bounds applied

to the globally constrained INR. Here, special emphasis will be given

to considering the AHECS type of scheme.

NUMERICAL BENCHMARKING

In the pYeceding sections, the constrained !NR strategy was
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modified to include several major improvements.

of:

i)

ii)

These consist

The use of localized constraints to help automate/control

and numerically stabilize the scheme and;

The use of auto_,atic absclssa/cr_inate updating to enable

the handling of problems which require either load, de-

flection or mixed load/deflection control.

To illustrate the improved convergence and efficiency characteristics

of the modified constrained INR, the main thrust of this section will

be to consider the results of several benchmark examples. Such bench-

marks will attempt to:

i) Verify the schemes ability to handle highly nonlinear

problems involving softening/hardening and buckling

behavior along with inelastic/nonlinear material pro-

perties and;

ii) Carefully compare the scheme with the numerical properties

of the MINR, FINR, and modified/BFGS updated INR and HECS

algorithms.

Based on such goals, three benchmark examples are included for

demonstration purposes namely:

i) The elastic buckling of a shallow arch;

ii) The elastic-plastic buckling of shallow arch;

iii) The load deflection characteristics of a shallow

spherical cap.

The choice of the elastic shallow arc_ problem depicted

in Fig. 5-I follows from its turning point behavior which marks the

transition between positive and indefinite stiffness behavior. The
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elastic-plastic behavior of the arch was employed since plasticity

greatly accentuates the nonlinearity/transitional behavior in the

vicinity of buckling. Lastly, the spherical cap shown in Fig. 5-2

was considered since it possesses very shallow stiffness characteris-

tics follo_ed by strong stiffening. Such properties typically cause

significant difficulties for unconstrained INR type schemes.

To implement such goals, the modified constrained INR strategy

was introduced into the ADINA 77 FE code. This facilitated treat-

ment of a wide variety of boundary conditions, material types, geo-

metries and element families.

As was noted earlier, load stepping in a constrained scheme

does not converge directly to the designated target values. To

enable the handling of problems involving specific target loads/

deflections, automatic ordinate/abscissa controls must be implemented

in the constrained methodology. Table 5-I illustrates a comparison

of the targeting capabilities of the AHECS and HECS controlled INR.

As can be seen, the AHECS converges to the specified load increment.

This is in contrast to the straight HECS whose converged value depends

on the intersection between the load deflection response and the type

of constraint surface employed.

As the first benchmarking activity, we shall consider the capa-

bility of the so-called AHECS modified INR to handle specific target

loading values. Of particular interest will be the evaluation of the

new schemes stability inconjunction with its numerical efficiency.

For example, Tables 5.2 - 5.4 illustrate the load step sensitivity

of the AHECS modified INR. As can be seen, with increasing load step

size, the unconstrained scheme completely fails while the AHECS especially
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with BFGS updating remains quite stable. Comparing the HECS with the

AHECS, we see from Tables 5.3 and 5.4 that the number of required

stiffness updates is significantly reduced with the use of automatic

abscissa/ordinate adjustment.

,_ext, the ability to handle load stepping in the neiqhborhood of

buckling will be considered. Noting the arch depicted in Fig. 5-i,

Fig. 5-3 illustrates the load deflection characteristics of the cen-

trally loaded case. In the context of Table 5.5, the inherent stability

and efficiency of the #,HECS to obtain the turning point is clearly

illustrated. Again the ._FGS updated version is numerica'lly more effi-

cient. This is especially true as load increment size increases.

Comparison of the handling characteristics in the elastic-plastic

4.

postbuckling range of arch behavior is given in Table 5.6. Based on

the model employed, the progressive growth of plastic sites during

collapse can be seen by noting the sequence defined by Figs. 5.4 and

5.5. Note the case considered consists of an arch wherein plastici-

zation is initiated just prior to buckling. This is clearly illustrated

in Fig. 5.4. Such a zone represents a relatively severe transition in

behavior and hence a natural benchmark test. As seen from Table 5.6, a

comparison of the various constraint schemes illustrates' that the AHECS

requires significantly less stiffness updates to yield numerically stable

converged solution.

Noting the spherical cap given in Fig. 5.2, Fig. 5.6 illustrates its

force deflection response to central loading. In the context of such

system behavior, Table 5.7 depicts the efficiency of the AHECS over the

straight HECS. Specifically, the AHECS required significantly less full

stiffness updates to converge to the designated load level. This is
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particularly true in the shallow range of cap behavior where numerous

load steps are usually necessary°

We shall now consider the relative merits associated with the use

of local constraints to automate load stepping.

from two points of view namely:

i)

ii)

This will be approached

The use of local constraints to control stepsize so as to

yield prescribed loads/displacements and;

Defining the load/displacement increment sensitivity of

the scheme.

For example in terms of the centrally loaded arch. Tables 5.8 -

5.11 illustrate the aspects denoted by i) and ii) given above. In

particular, as can be seen from these tables, a wide range of load steps

and local deflection constraints are stabily and efficiently accomodated

by the scheme. Specifically, essentially unlimited load step sizes

can be handled. In addition to illustrating sensitivity to load and

local constraint step size, the results given in Tables 5.8 - 5.11 also

point to the fact that localized constraints can be used to handle either

load or deflection control. In particular, two target deflection states

were considered in the postbuckling range namely .4 and .8 inches. These

are illustrated in Fig. 5-7. As seen from the Tables, the results were

essentially independent of step size. This is clearly illustrated by the

fact that the number of iterations does not vary significantly, as step

size increased. Again, the BFGS version has a decided advantage over the

MINR type constrained scheme especially as the number of increments is

increased.

The preceding developments and associated benchmarks have illu-

strated the wide ranging potentials/capabilities _nd numercal roh_stne_s
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VI.

of the concept of using localized constraints to,resize and reshape

the global constraint surface controlling successive iterations of

the INR family of nonlinear FE solution algorithms. Due to their

overall algorithmic structure, such procedures are easily adapted to

use in general purpose FE computer codes.

SUr¢.t_RY

As seen in the preceding section, this paper has developed

numerical strategies which enable the automatic adjustment of load/

deflection incrementation for NR type nonlinear FE equation solvers.

This was achieved through the introduction of a hierarchy of localized

constraints which enable the control/delimiting of the iterative

excursions of the governing field variables. Such constraints enable

the automatic adjustment of the size, shape, and orientation of the glo-

bal constraint surface used to control the NR solver. As can be seen

from the development, localized bounds can be established for any of

the governing field variables. This includes the establishment of

localized bounds on excursions in displacement, the deformation gra-

dients stress, strain, as well as in energy.

Due to the generality of the approach taken, a wide variety of

constraint Surface geometries can be handled by the overall methodology.

Note, such constraints have advantages which are dependent on structural

configuration, material properties, as well as, on boundary and loading

conditions. Specifically, deformation and deformation gradient control

are better suited to thin walled structure. In contrast, for thick

walled configurations, constraints on stress, strain and energy are more

useful. For structure containing both thick and thin walled components,

3O



a combination of localized constraints can be used to control the resizing,

shaping and orientation process leading to automatic incrementation.

Due to the manner of formulation, the overall scheme can be

incorporated in most general purpose FE codes. Such a process would

require little rearchitecturing, especially if good data management

procedures are in effect

Overall, the project hos resulted in numerous papers in a wide

variety of national and international journals. These include:

.

2.

3.

4.

5.

6.

7.

Computers and Structures

Computational Mechanics

International Jr. of Engineering Science

Franklin Institute

Finite Elements in Analysis and Design

Engineering Mech. ASCLE

AIAA

Atotal list of papers is given in Appendix 3.
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FIGURE AND TABLE CAPTIONS

Figure

2.!

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

NO. _Caption

!nter__ection of ItJRtype stiffness extrapolation

of solution curve and F : constant constraint

curve in force deflection space

INR type iterations/extrapolation,s

oblique linear, circularelliptic

bound by .

and piecewise

continuous hyperbolic constraint curves

Elliptically constrained INR iterations about

buckling point

Typical failures ,of oblique linear, circular,

elliptic and piecewise hyperbolim constraint surfaces

due to "mis-sizing"

Load step utilization of various constrained

INR methodologies

Rotated and rotated-translatecP hyperplanar

constraint

Iteration process associated with translated

hyperbolic constraint

Iteration process associated with abscissa

stretched HECS

Targeting oblique linear constraint curve via

sweeping through fixed angular increments

Targeting oblique linear constraint curve via

sweeping through fixed force increments

Targeting oblique linear constraint curve via

sweeping through fixed MINR estimated &Y
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Figure

3.7

3.3

4.1

4.2

4.3

5.1

5.2

5.3

5.4

5.5

5_6

5.7

No. Caption

Geometry associated with successive iterations

of fixed MINR estimated _Y sweep of oblique

linear constraint

Geometry associated with successive iterations

of fixed MINR estimated '_,Y stretched elliptic

constraint

Geometry of HECS

Ordinate expansion of HECS

Incremental energy stored in eth element

Arch material properties, geometry and

boundary conditions

Spherical cap material properties geometry

and boundary conditions

Force deflection behavior of centrally loaded

arch (Fig. 5.1)

Elastic-plastic postbuckling behavior of

centrally loaded arch

Spread of plasticity in postbuckling range of

centrally loaded arch response (Fig. 5.4)

Load deflection response of centrally loaded

spherical cap

Prescribed deflections for centrally loaded

arch problem
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Table No.

5.1

5.2

5.3

5._

5.5

5.6

5.7

5.8

5.9

5.10

5.11

Caption
=

Comparison of single step converged final

solution values for centrally loaded arch

Load steo sensitivities of FINR, MINR, MINR-AHECS

and _FGS-AHECS

Stiffness update/iteration requirements for MINR

modified HECS and AHECS algorithms: arch subject

to 30 lb. target load

Stiffness update/iteration requirements for

BFGS modified HECS and AHECS algorithms: arch

subject to 30 lb. target load

Stiffness update/iteration requirements to

calculate buckling point of ceni>rally loaded

arch

Stiffness update/iteration requirements to

calculate elastic-plastic postbuckling behavior

of arch (Fig. 5.4)

Stiffness update/iteration requirements for cap

subject to 30 lb. target load

Comparison of efficiencies of locally constrained

MINR-HECS and BFGS-HECS for arch with .4 inch

designated target deflection and I00 lb. aF

Comparison of efficiencies of locally constrained

MINR-HECS and BFGS-HECS for arch with .4 inch de-

signated target deflection and 500 lb. aF

Comparison of efficiencies of locally constrained

MINR-HECS and BFGS-HECS for arch with .8 inch

designated target deflection and I00 lb. z_F

Comparison of efficiencies of locally constrained

MINR-HECS and BFGS-HECS for arch with .8 inch

designated target deflection and 500 lb. t_F
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Applied Load Step

LF

15 Ib

25 Ib

30 Ib

HECS

10.35 Ib

16.25 "Ib

19.2 Ib

AHECS

(MI'4R, BFGS)

15 Ib

25 Ib

30 Ib

Table 5.1 Comparison of Single Step Converged Final Solution
Values for Centrally Loaded Arch

37



Applied Load

Step
Ib,

I0

15

25

3O

FINR

Iter.

Failed

MI_JR

Iter.

9

Failed

AHECS

(MINR)

Iter.

12

Failed Failed 17

AHECS

(BEGS)

Iter.

6

Table 5.2 Load Step Sensitivities
and BFGS-AHECS

of FINR, MINR, MINR-AHECS
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#pplied Load

(lb)

MINR-HECS

BFGS-HECS

MINR-AHECS

BFGS-AHECS

Step .5

75
9-T

75
91

51

51
110

,

68
79

68
78

41
91

41
83

,

48
54

48
53

3O
7O

3O
61

Table 5, 6 Stiffness Update/Iteration Requirements to
Calculate Elastic-Plastic Postbuckling Behavior
of Arch (-Fig. 5.4)
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No.

of Load Steps

Load Step

(Ib)

Ccrit
(in)

Final Load Step

(Ib)

Final Deflection

(in)

MINR-HECS

(Iter)

BFGS-HECS

(Iter)

I00

• O8

36.3

.4

I0

I00

• O4

36.3

,4

25

100

.016

36.3

.4

5O

1O0

• 004

36.3

,4

100

100

.008

36.3

.4

130

72

95

82

85

74

8O

69

115

106

Table 5.B Comparison of Efficiencies of Locally Constrained
MINR-HECS and BFGS-HECS for Arch With .4 Inch
Designated Target Deflection and I00 Ib &F
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No. of Load Steps

Load Step

(Ib)

°crit
(in)

Final Load Step

(Ib)

Final Deflection

(in)
, ,,,,

MNR-HECS

(Iter)

BFGS-HECS

(Iter)

5

500

.08"

36.3

.4

141

78

I0

5OO

.O4

36.3

.4

II0

96

25

5OO

.016

36.3

.4

99

86

5O

5OO

• OO8

36.3

.4

91

79

I00

5O0

• 004

36.3

.4

129

117

Table 5.9 Comparison of Efficiencies of Locally Constrained
MINR-HECS and BFGS-HECS for Arch With ,4 Inch

Designated Target Deflection and 500 Ib aF
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No. of Load Steps

Load Step

(Ib)

_crit
(in)

Final Load Step

(Ib)

Final Deflection

(in)

MINR-HECS

(Iter)

BFGS-HECS

(Iter)

I00

.16

28.6

.8

180

90

IO

I00

.08

28.6

.8

152

25

1O0

.032

28.6

.8

131

I19

50

1O0
¢

.016

28.6

.8

"128

112

100

IO0

,008

28.6

.8

lZ_8

119

Table 5,10 Comparison of Efficiencies of Locally Constrained

MINR-HECS and BFGS'HECS for Arch with .8m Designated

Target Deflection and IO0 Ib _F
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No. of Load Steps

Load Step
(Ib)

_crit
(in)

Final Load Step

(lb)

Final Deflection

_(in)

rINR-HECS

(Iter)

MNR-HECS

(Iter)

500

.16

28.6

.8

I0 25 5O I00

191

92

5OO

.O8

28.6

5O0

.032

28.6

500

.016

28.6

5OO

.008

28.6

,8

162

138

.8

141

121

.8

139

119

,8

157

125

Table 5.11 Comparison of Efficiencies of Locally Constrained

MINR-HECS and BFGS-HECS for Arch With .8m Designated

Target Deflection and 500 Ib _F
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